Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Across many species where inversions have been implicated in local adaptation, genomes often evolve to contain multiple, large inversions that arise early in divergence. Why this occurs has yet to be resolved. To address this gap, we built forward-time simulations in which inversions have flexible characteristics and can invade a metapopulation undergoing spatially divergent selection for a highly polygenic trait. In our simulations, inversions typically arose early in divergence, captured standing genetic variation upon mutation, and then accumulated many small-effect loci over time. Under special conditions, inversions could also arise late in adaptation and capture locally adapted alleles. Polygenic inversions behaved similarly to a single supergene of large effect and were detectable by genome scans. Our results show that characteristics of adaptive inversions found in empirical studies (e.g. multiple large, old inversions that are F ST outliers, sometimes overlapping with other inversions) are consistent with a highly polygenic architecture, and inversions do not need to contain any large-effect genes to play an important role in local adaptation. By combining a population and quantitative genetic framework, our results give a deeper understanding of the specific conditions needed for inversions to be involved in adaptation when the genetic architecture is polygenic. This article is part of the theme issue ‘Genomic architecture of supergenes: causes and evolutionary consequences’.more » « less
-
Simulation is a key tool in population genetics for both methods development and empirical research, but producing simulations that recapitulate the main features of genomic datasets remains a major obstacle. Today, more realistic simulations are possible thanks to large increases in the quantity and quality of available genetic data, and the sophistication of inference and simulation software. However, implementing these simulations still requires substantial time and specialized knowledge. These challenges are especially pronounced for simulating genomes for species that are not well-studied, since it is not always clear what information is required to produce simulations with a level of realism sufficient to confidently answer a given question. The community-developed framework stdpopsim seeks to lower this barrier by facilitating the simulation of complex population genetic models using up-to-date information. The initial version of stdpopsim focused on establishing this framework using six well-characterized model species (Adrion et al., 2020). Here, we report on major improvements made in the new release of stdpopsim (version 0.2), which includes a significant expansion of the species catalog and substantial additions to simulation capabilities. Features added to improve the realism of the simulated genomes include non-crossover recombination and provision of species-specific genomic annotations. Through community-driven efforts, we expanded the number of species in the catalog more than threefold and broadened coverage across the tree of life. During the process of expanding the catalog, we have identified common sticking points and developed the best practices for setting up genome-scale simulations. We describe the input data required for generating a realistic simulation, suggest good practices for obtaining the relevant information from the literature, and discuss common pitfalls and major considerations. These improvements to stdpopsim aim to further promote the use of realistic whole-genome population genetic simulations, especially in non-model organisms, making them available, transparent, and accessible to everyone.more » « less
-
Simulation is a key tool in population genetics for both methods development and empirical research, but producing simulations that recapitulate the main features of genomic data sets remains a major obstacle. Today, more realistic simulations are possible thanks to large increases in the quantity and quality of available genetic data, and to the sophistication of inference and simulation software. However, implementing these simulations still requires substantial time and specialized knowledge. These challenges are especially pronounced for simulating genomes for species that are not well-studied, since it is not always clear what information is required to produce simulations with a level of realism sufficient to confidently answer a given question. The community-developed framework stdpopsim seeks to lower this barrier by facilitating the simulation of complex population genetic models using up-to-date information. The initial version of stdpopsim focused on establishing this framework using six well-characterized model species (Adrion et al., 2020). Here, we report on major improvements made in the new release of stdpopsim (version 0.2), which includes a significant expansion of the species catalog and substantial additions to simulation capabilities. Features added to improve the realism of the simulated genomes include non-crossover recombination and provision of species-specific genomic annotations. Through community-driven efforts, we expanded the number of species in the catalog more than three-fold and broadened coverage across the tree of life. During the process of expanding the catalog, we have identified common sticking points and developed best practices for setting up genome-scale simulations. We describe the input data required for generating a realistic simulation, suggest good practices for obtaining the relevant information from the literature, and discuss common pitfalls and major considerations. These improvements to stdpopsim aim to further promote the use of realistic whole-genome population genetic simulations, especially in non-model organisms, making them available, transparent, and accessible to everyone.more » « less
-
Abstract Gradient Forest (GF) is a machine learning algorithm designed to analyze spatial patterns of biodiversity as a function of environmental gradients. An offset measure between the GF‐predicted environmental association of adapted alleles and a new environment (GF Offset) is increasingly being used to predict the loss of environmentally adapted alleles under rapid environmental change, but remains mostly untested for this purpose. Here, we explore the robustness of GF Offset to assumption violations, and its relationship to measures of fitness, using SLiM simulations with explicit genome architecture and a spatial metapopulation. We evaluate measures of GF Offset in: (1) a neutral model with no environmental adaptation; (2) a monogenic “population genetic” model with a single environmentally adapted locus; and (3) a polygenic “quantitative genetic” model with two adaptive traits, each adapting to a different environment. We found GF Offset to be broadly correlated with fitness offsets under both single locus and polygenic architectures. However, neutral demography, genomic architecture, and the nature of the adaptive environment can all confound relationships between GF Offset and fitness. GF Offset is a promising tool, but it is important to understand its limitations and underlying assumptions, especially when used in the context of predicting maladaptation.more » « less
-
Abstract The potential of reef‐building corals to adapt to increasing sea‐surface temperatures is often debated but has rarely been comprehensively modeled on a region‐wide scale. We used individual‐based simulations to model adaptation to warming in a coral metapopulation comprising 680 reefs and representing the whole of the Central Indo‐West Pacific. Encouragingly, some reefs—most notably Vietnam, Japan, Taiwan, New Caledonia and the southern half of the Great Barrier Reef—exhibited high capacity for adaptation and, in our model, maintained coral cover even under a rapid “business‐as‐usual” warming scenario throughout the modeled period (200 years). Higher resilience of these reefs was observed under all tested parameter settings except the models prohibiting selection and/or migration during warming. At the same time, the majority of reefs in the region tended to collapse within the first 100 years of warming. The adaptive potential (odds of maintaining high coral cover) of a given reef could be predicted based on two metrics: the reef's present‐day temperature, and the proportion of recruits immigrating from warmer locations. The latter metric explains the most variation in adaptive potential, and significantly correlates with actual coral cover changes observed throughout the region between the 1970s and the early 2000s. These findings will help prioritize coral conservation efforts and plan assisted gene flow interventions to boost the adaptive potential of specific coral populations.more » « less
An official website of the United States government
